

Water in solid biofuels: Accurate measurements, off-line and on-line

Henrik Kjeldsen BIOFMET 1st BIOFMET Stakeholders' Workshop Lisbon 2 – 3 June 2022

How much water?

DANISH TECHNOLOGICAL

Teaser / outline: Water in solid biofuels

- Solid biofuel = Combustible organic compounds + lot of water (20 50 %)
- Organic compounds burn water don't
- 1. How to measure water content
- 2. Traceability
 - Reference method
 - Transfer to industry

Motivation

- Impact
 - €€€€€€€€
 - Combustion technique
 - Sampling
- Challenges
 - Heterogeneity with respect to...
 - Sample material
 - Impurities
 - Physical parameters
 - Water content

- CPH burning solid biofuel
 - Green: CO₂ neutral
 - Backup for solar and wind power

What are the options?

- Relevant for all part of the value chain:
 - Producers
 - Distributers
 - Consumers

Options

- 1. LoD (Loss on Drying) + Sampling
- 2. Moisture measurement device (+ less sampling)

Uncertainty / accuracy l

- Where does the uncertainty come from?
 - Sampling: 80 %
 - Handling: 15 %
 - Measurement (LoD): 5 %
 - Source: 1) Finish VVT report, 2) Similar results by DTI
- Sampling dimensions: $3D \rightarrow 2D \rightarrow 1D \rightarrow 0D$
 - Aim for 1D (e.g. belt) or 0D (entire lot)
- Classic question: Is it possible to get similar accuracy using electronic device instead of LoD for moisture measurements?
- Sampling $\leftarrow \rightarrow$ Calibration

2D

Option 1: "Traditional" procedure

- LoD (Loss on Drying) + Sampling
- Where does the uncertainty come from?
 - Sampling: 80 %
 - Handling: 15 %
 - Measurement (LoD): 5 %
 - Source: 1) Finish VVT report, 2) Similar results by DTI
- Sampling dimensions: $3D \rightarrow 2D \rightarrow 1D \rightarrow 0D$
 - Aim for 1D (e.g. belt) or 0D (entire lot)

Option 2: Online moisture measuring

- Moisture measurement device (+ less sampling)
- Where does the uncertainty come from?
 - Sampling: small
 - Handling: small
 - Measurement (device): larger
 - Calibration (larger)
- Key question: Is it possible to get similar accuracy using electronic device instead of LoD for moisture measurements?
 - Sampling $\leftarrow \rightarrow$ Calibration

Definition of metrological traceability:

• Property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty

TECHNOLOGICAL Traceability -> accurate measurements in industry

Definition of metrological traceability:

• Property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty

Requirements to reference methods

- SI definition
 - Water mass fraction, WMF

$$WMF = \frac{m_{water}}{m_{sample}}$$

- Mass of sample, m_{sample} : Easy
- Mass of water, *m_{water}*: Require measuring method specific to water
- Example I: Coulometric Karl Fischer titration (cKF)
- Example II: Evolved Water Vapour (EWV)

Loss on Drying not specific to water \rightarrow **NOT** a reference method

Reference method: Evolved Water Vapour (EWV)

• Measure water vapor evolved from sample

EWV: Implementation Evolved Water Vapour

- EVW using dew-point temperature (EVW-DP) (DTI)
 - Water = $\int [flow][water content]dt$
 - Measure water vapor evolved from sample
- EVW using coulometric Karl Fischer titration (vap-C-KFT) (CETIAT)
- EVW using P₂O₅ sensor (CETIAT)
- EVW-freeze (VTT)
 - Water collected by freezing
- BIOFMET: Intercomparison ongoing

TECHNOLOGICAL INSTITUTE

Data from EWV-DP

- Water vapour is monitored
- Temperature is gradually increased to 105 °C
- Test ends when measured dew point is below -10 °C, corresponding to 0.1 g/h

EWV-DP

- Data from wood pellets
- To Be Verified: Data indicates that small, but significant amounts of VOCs are evaporated during drying

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
LoD	12.48 ± 0.09 g	12.49 ± 0.02 g	12.48 ± 0.01 g	12.62 ± 0.01 g	12.48 ± 0.01 g
EWV	12.11 ± 0.30 g	12.32 ± 0.55 g	12.16 ± 0.38 g	12.23 ± 0.36 g	12.07 ± 0.34 g
%mc	6.23 ± 0.02 %	6.22 ± 0.02 %	6.23 ± 0.02 %	6.24 ± 0.02 %	6.23 ± 0.02 %
%w	6.05 ± 0.15 %	6.13 ± 0.27 %	6.07 ± 0.19 %	6.05 ± 0.18 %	6.03 ± 0.17 %

BIOFMET intercomparison

• Results if available...

Definition of metrological traceability:

• Property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty

Transfer standard

- A transfer standard is a device or method that can link an industrial device to a primary method
- Examples
 - Fresnell's device
 - Acoustic device (CMI)
 - Loss on drying
- Alternative: Certified Reference Material

Definition of metrological traceability:

• Property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty

Example of devices in industry DUT = Device Under Test

- MW: MicroWave equipment
- NIR: Near InfraRed
- MT: Moisture transducer
- ...

Calibration/adjustment: Requirements

- 1. Transfer standard
 - Transfer standard and DUT measurement on equivalent sample material
 - →Remember this during installation!
 - → Sampling may be required
- 2. Sample material
 - Must cover entire measurement range
 - \rightarrow No extrapolation!
 - Special sample material may be prepared
 - Control moisture content!

Examples

MW

Examples

MW + NIR

Colinedata vs. LoD 100 45 30 25 × Data points (fit) -Best fit ± al.dev 200 ^{k.} 200 89 255 40 200 45 50 Predicted water content using madel (% with

NIR

Less successful attempts of calibration

- 1) Måles på en repræsentativ del af flisen?
- 2) Er det muligt at tage prøver til kalibrering?
- 3) Er procedurer til måling og kalibrering fagligt <u>kvalificerede</u>
- 4) Dækker kalibreringsprøverne måleområdet 🛱

Less successful attempts of calibration...

Conclusion

- Two options for accurate measurement of water content
 - Sampling + offline measurements
 - Online moisture measureing \rightarrow Calibration
- Calibration of online devices are possible, but requires effort

Thank you for your attention!

Henrik Kjeldsen

Project Leader, dr.scient.

Danish Technological Institute (DTI)

+45 72 20 29 09

hkje@dti.dk