

SI-traceable inline measurements of water content in biomass at CHP plant

Henrik Kjeldsen, Danish Technological Institute (DTI) BIOFMET 2nd Stakeholders' Workshop PTB Braunschweig 28 – 29 March 2023

Measuring water in solid biofuels

- Solid biofuel = Combustible organic compounds + lot of water (10 - 60 %)
- Organic compounds burn water don't
- 1. Inline measurements
- 2. What is SI traceability?
- 3. How to measure water content ... with traceable results!

Project motivation

- Biomass is a key building block in sustainable energy supply
- EU aims to increase the use of biomass, reaching at least a 27 % share of renewable energy consumption
- Water content in solid biofuel materials is a key parameter for the characterization
 - Optimal combustion efficiency
 - Fair payment
- Inline water-content measurements
 - Significant advantages over traditional LoD measurements
 - Simplifies the sampling process
 - Calibration is a challenge

biofMET

Motivation

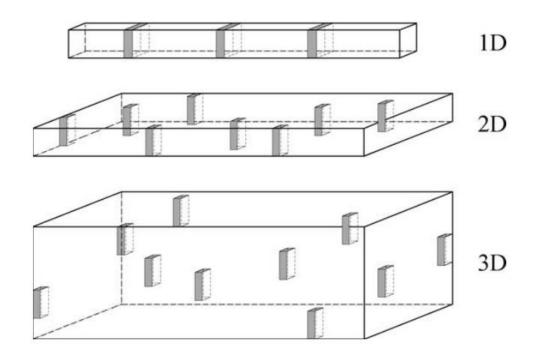
- Impact
 - €€€€€€€€
 - Combustion technique
 - Sampling
- Challenges
 - Heterogeneity with respect to... Sample material, Impurities, Physical parameters (size), Water content
- CHP plants burning solid biofuel
 - Green: CO₂ neutral
 - Backup for solar and wind power

What are the options?

- Relevant for all part of the value chain:
 - Producers
 - Distributers
 - Consumers

Options

- 1. LoD (Loss on Drying) + Sampling
- 2. Moisture measurement device (+ less sampling)



Option 1: "Traditional" procedure

- LoD (Loss on Drying) + Sampling
- Where does the uncertainty come from?
 - Sampling: 80 %
 - Handling: 15 %
 - Measurement (LoD): 5 %
 - Source: 1) Finish VVT report, 2) Similar results by DTI
- Sampling dimensions: $3D \rightarrow 2D \rightarrow 1D \rightarrow 0D$
 - Aim for 1D (e.g. belt) or 0D (entire lot)

Option 2: Inline measurements (Example: MW) -> Calibration

Den gule kildebeholder under båndet er i stilling ÅBEN (gammastråle) när lukketøjet er i retning "down stream" (se foto).

Kontakt evt. Martin Gjesing Jens-Ole Hougaard

Radioaktivitet

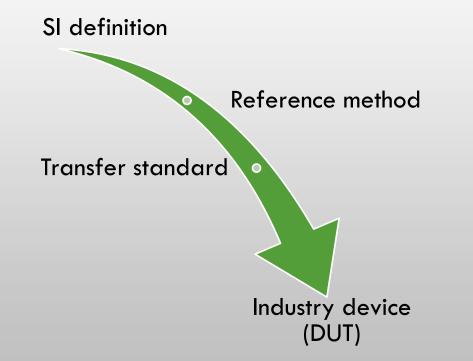
Åben

TEKNOLOGISK

biofMET

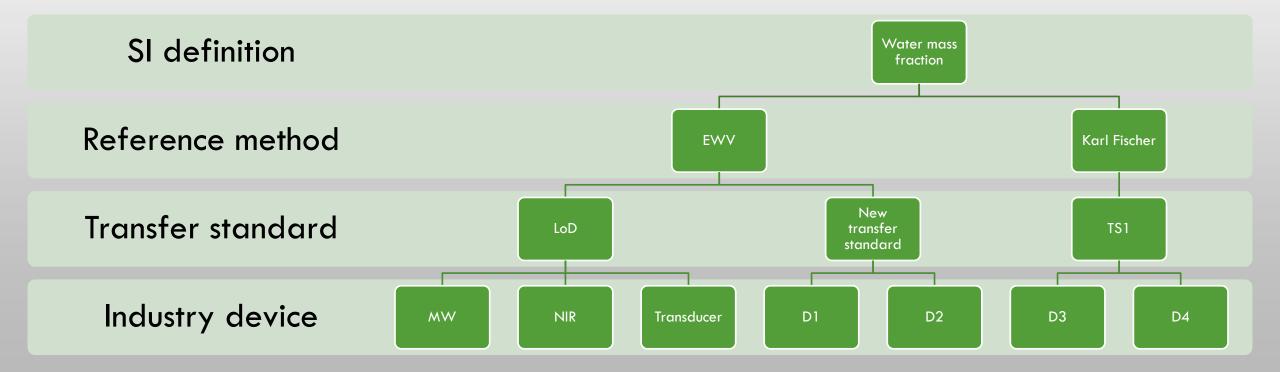
Option 2: Online moisture measuring

- Moisture measurement device (+ less sampling)
- Where does the uncertainty come from?
 - Sampling: small
 - Handling: small
 - Measurement (device): larger
 - Calibration (larger)
- Key question: Is it possible to get similar accuracy using electronic device instead of LoD for moisture measurements?

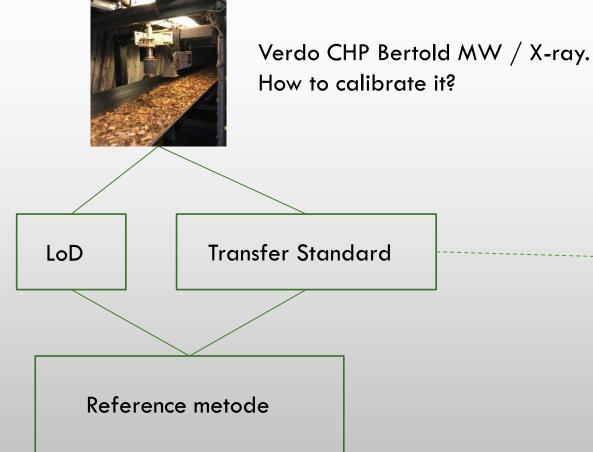


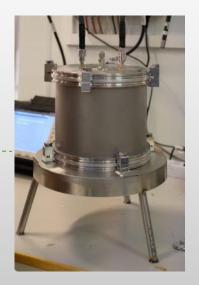
■ Sampling ← → Calibration

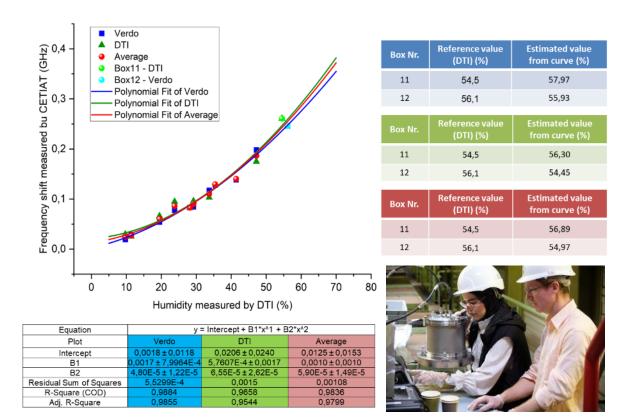
Traceability -> accurate measurements in industry



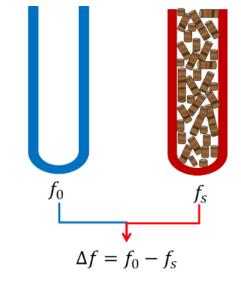
- Definition of metrological traceability:
- Property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty




Traceability -> accurate measurements in industry



Providing Traceability to Industry



Example of transfer standard (CETIAT)

- Chamber (resonant cavity) has been constructed and is currently tested and metrologically characterized
- Calibrated and tested in industry

Reference methods for water in solids

TEKNOLOGISK

Requirements to reference methods

• SI definition: Water mass fraction, *WMF*

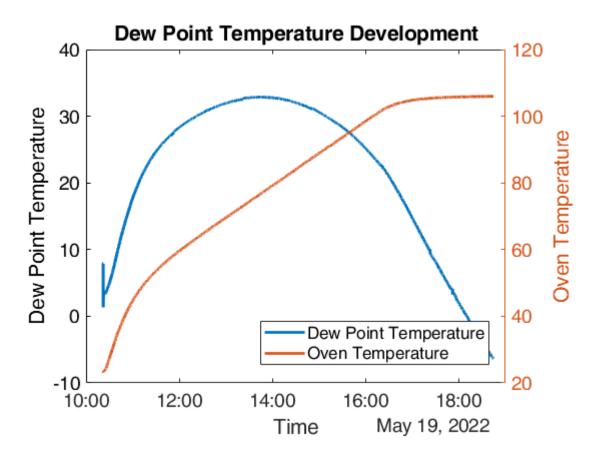
 $WMF = \frac{m_{water}}{m_{sample}}$

- Mass of sample, *m_{sample}*: Easy
- Mass of water, *m*_{water}: Require method specific to water
- Example I: Coulometric Karl Fischer titration (cKF)
- Example II: Evolved Water Vapour (EWV)

Loss on Drying not specific to water \rightarrow **NOT** a reference method

EWV: Implementation Evolved Water Vapour

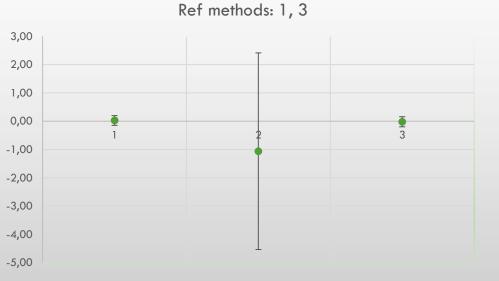
- EVW using dew-point temperature (EVW-DP) (DTI)
 - Water = $\int [flow][water content]dt$
 - Measure water vapor evolved from sample
- EVW using coulometric Karl Fischer titration (vap-C-KFT) (CETIAT)
- EVW using P₂O₅ sensor (CETIAT)
- EVW-freeze (VTT)
 - Water collected by freezing
- BIOFMET: Validated by laboratory intercomparison



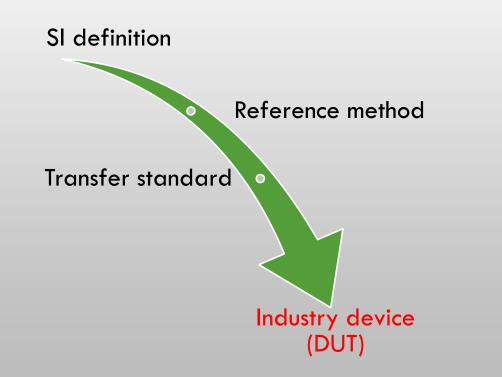
DANISH TECHNOLOGICAL INSTITUTE

Data from EWV-DP

- Water vapour is monitored
- Temperature is gradually increased to 105 °C
- Test ends when measured dew point is below -10 °C, corresponding to 0.1 g/h



Validation: Lab intercomparison



Moving traceability to industry

Example of devices in industry DUT = Device Under Test

- MW: MicroWave equipment
- NIR: Near InfraRed

. . .

MT: Moisture transducer

DANISH TECHNOLOGICAL INSTITUTE

Calibration/adjustment: Requirements

- 1. Transfer standard
 - Transfer standard and DUT measurement on equivalent sample material
 - Remember this during installation!
 - →Sampling may be required
- 2. Sample material
 - Must cover entire measurement range
 - \rightarrow No extrapolation
 - Special sample material may be prepared
 - Control moisture content!

Sample material

TEKNOLOGISK

biofMET

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Sample material

- Challenge: Woodchips are inhomogeneous
 - Chemical / physical
- Selected material
 - "White" woodchips, no bark etc.
 - Small chips \rightarrow packing
 - Mixture of Picea Abies (Norway Spruce, Épicéa commun) and Picea Sitchensis (Sitka Spruce, Épicéa de Sitka).
- Water mass fraction 10 % to 60 %
 - Pre-dried at 40 °C to 10 % water fraction
 - Mixed ...
 - Re-humidified (12 fractions)

Den gule kildebeholder under håndet er i stilling ÅBEN (gammastråle) når lukketøjet er i retning "down stream" (se foto).

Kontakt evt. Martin Gjesing Jens-Ole Hougaard

Lukket

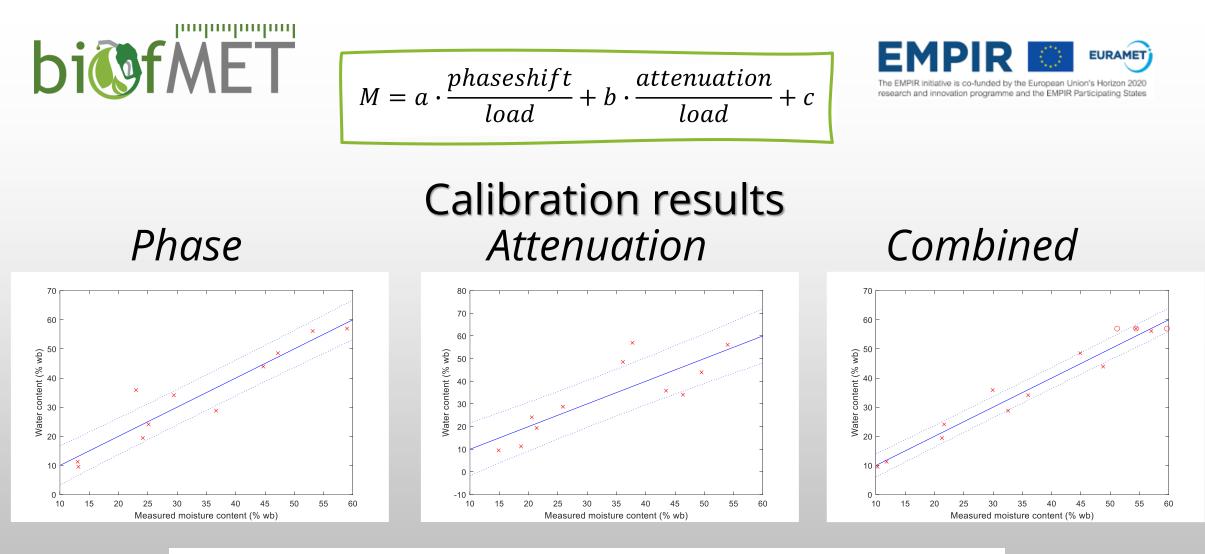
Åben

Calibration

TEKNOLOGISK

Measurements using MW (DUT) at site

Reference measurements: Method


- DTI reference provides values
 - Evolved water vapour using dewpoint temperature
- Homogeneity: LoD (Loss on Drying) on two subsamples
 - Both before ref. measurements
- Stability: LoD on two subsamples
 - Before and after ref. measurements
- Problem: Biological activity

Reference measurements: Results

#	Box	Phase	Att.	Load	Ref	u ref	u hom	u stab	υ (k=1)
1	10	-86.13	2.21	10.36	11.26%	0.14%	0.26%	0.94%	1.0%
2	9	-90.28	1.9	9.98	9.53%	0.13%	0.26%	0.94%	1.0%
3	8	-73.31	5.15	10.41	19.40%	0.24%	0.26%	0.94%	1.0%
4	7	-71.06	4.93	10.19	24.09%	0.28%	0.26%	0.94%	1.0%
6	5	-54.61	9.4	10.71	28.80%	0.42%	0.26%	0.94%	1.1%
7	4	76.1	7.78	11.94	35.85%	0.39%	0.26%	0.94%	1.1%
8	3	71.37	7.38	10.74	34.09%	0.39%	0.26%	0.94%	1.0%
9	2	119	15.52	11.62	43.94%	0.48%	0.26%	0.94%	1.1%
10	1	9.87	15.38	11.37	48.53%	0.52%	0.26%	0.94%	1.1%
11	blank	1.29	0.19	7.88					
12	11	145.86	17.66	11.4	56.10%	0.57%	0.26%	0.94%	1.1%
13	12	22.95	20.4	11.51	56.97%	0.61%	0.26%	0.94%	1.1%

Method		U(cal), expanded calibrations
	uncertainty ($k = 1$)	uncertainty $(k = 2)$
Phase	3.3 %	6.6 %
Attenuation	2.1 %	4.2 %
Phase and attenuation	1.5 %	3.1 %

Conclusion outlook

TEKNOLOGISK

Conclusion & Outlook

- Calibration of online MW system performed
 - Water-fraction range: 10 60 %
 - Accuracy: 3.1 % absolute
- Improvements
 - Handling sample material at site
 - Load sensor
 - Storage of sample material
 - Test of different types of sample material

biofMET

Support

- This work is part of the 19ENG09 BIOFMET project. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.
- This study was supported by a grant from Danish Technological Institutes performance contract 2021-2024, entered with the Danish Agency for Higher Education and Science, under The Ministry of Higher Education and Science Denmark. Collaborators are greatly acknowledged.

Thank you for your attention!

Henrik Kjeldsen

Project Leader, dr.scient.

Danish Technological Institute (DTI)

+45 72 20 29 09

hkje@dti.dk